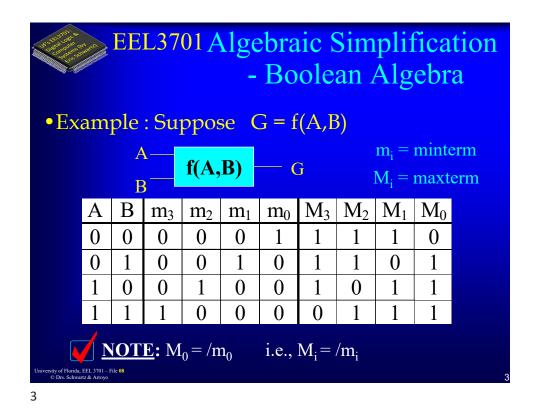


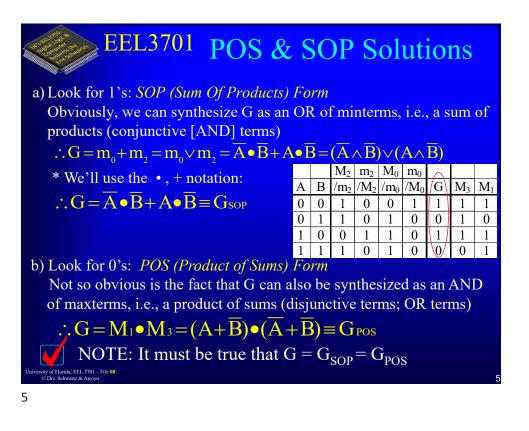
EEL3701 Algebraic Simplification a Boolean Algebra. Definitions (Review) Minterms (written as m_i): A conjunctive (AND) term that is 1 in one and one only row of an exhaustive truth table. Analogy: A minterm is like a column unit vector, u_i, in 2ⁿ space, (where n = number of Boolean Variables), e.g., m₂=[0, 0, 1, 0]^T (only one 1) Maxterms (written as M_i): A disjunctive (OR) term that is 0 in one and one only row of an exhaustive truth table. Analogy: A maxterm is like a complement of a unit vector u_i in 2ⁿ space, e.g., M₂=[1, 1, 0, 1]^T (i.e., only one 0) Definition: Any function can be written as a <u>product of sums</u> that is as a conjunction of disjunctive terms (AND of ORs).

2

University of Florida, EEL 3701 – File 08 © Drs. Schwartz & Arroyo



			M_2		M_0	& 2n m ₀				
_	A	В		2	V	/M ₀	G	M ₃	M_1	/\.
	0	0	1	0	0	1	1	1	1	
	0	1	1	0	1	0	0	1	0	$m_i = /M$
	1	0	0	1	1	0	1	1	1	_
	1	1	1	0	1	0	0	0	1	

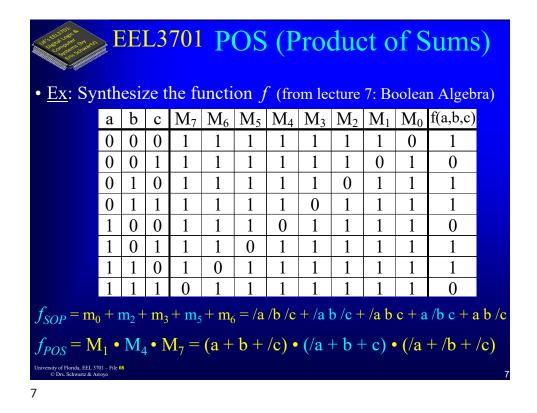


EEL3701 Algebraic Simplification - Boolean Algebra

- We could have synthesized the function *f* (from lecture 6) using the 0's, as a POS (instead of with a SOP)
 >[RECALL]: Maxterms (ORs of literals) are places (columns) in an exhaustive truth table that are 1 everywhere except in one and only one row
 >Therefore, to obtain the zeros for *f*, we take products
 - (ANDs) of maxterms
- Since any function *f* can be synthesized as a product (conjunction) of sums (ORs; disjunctions), i.e., a POS, then

 $f = \prod_{i} \text{Maxterm}_{i} \text{ ALSO } f = \sum_{i} \text{Minterm}_{i}$

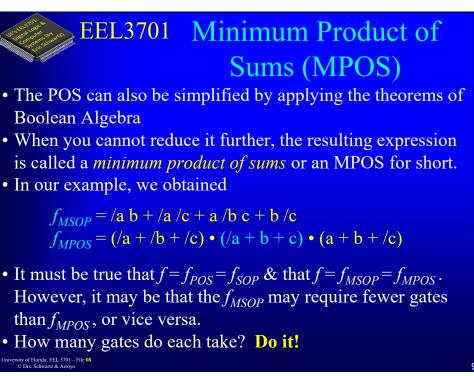
6

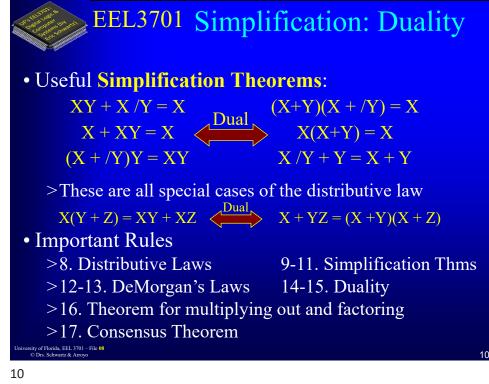


POS versus SOP EEL3701 $f_{SOP} = /a/b/c + /a b/c + /a b c + a/b c + a b/c$ • Ex (continued): f has 0's in rows 1, 4, and 7, i.e., when (a,b,c) are (0,0,1), (1,0,0), and (1,1,1), respectively, then $> M_1 = a + b + /c$ $M_4 = /a + b + c$ $M_7 = /a + /b + /c$ $f_{POS} = M_7 \bullet M_4 \bullet M_1 = (/a + /b + /c) \bullet (/a + b + c) \bullet (a + b + /c)$ • See how dissimilar the POS & SOP are? But they represent the same *f* !!! They must be equivalent expressions. $f_{POS} = (/a + /b + /c) \bullet (/a + b + c) \bullet (a + b + /c)$ $= /a /b /c + /a b /c + /a b c + a /b c + a b /c = f_{SOP}$ • The f_{SOP} was simplified. Can the $a \ b \ c \ M_7 \ M_6 \ M_5 \ M_4 \ M_3 \ M_2 \ M_1 \ M_0 \ f(a,b,c) \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1$ f_{POS} be simplified? No 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 • Is it possible that even after 1 1 1 1 1 1 1 0 simplifying, f_{SOP} may require fewer $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ 1 0 1 1 0 1 0 1 1 1 1 gates than f_{POS} or vice versa? Yes 0 1 ity of Florida, EEL 3701 – File 08 1 1 1 0 1 1 1 1 1 1 1 0

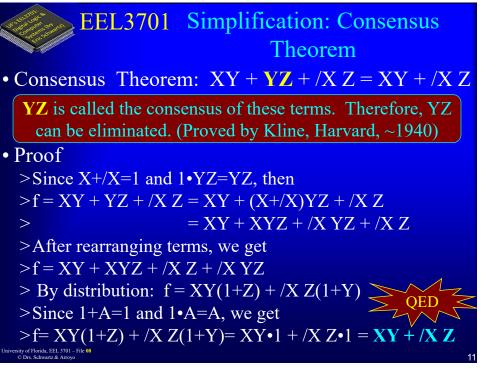
University of Florida, EEL 3701 – File **08** © Drs. Schwartz & Arroyo

8

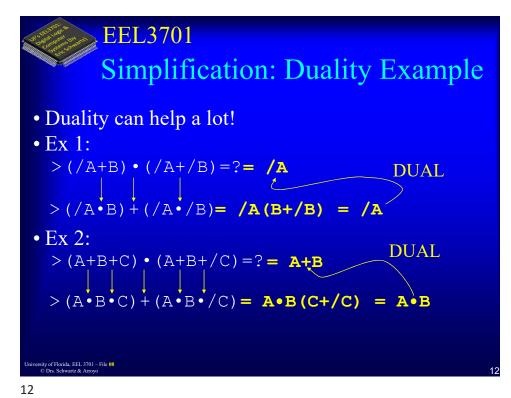




University of Florida, EEL 3701 – File **08** © Drs. Schwartz & Arroyo



11



University of Florida, EEL 3701 – File 08 © Drs. Schwartz & Arroyo

6

MSOP, MPOS, Simplification

7



13

University of Florida, EEL 3701 – File 08 © Drs. Schwartz & Arroyo